
May 1991 UILU-ENG-91-2227

CRHC-91-17

Center for Reliable and High-Performance Computing

" /ff

,./IJ 5; F.__.

=, _. I
J

THE EFFECT OF C ODE

EXPANDING OPTIMIZATIONS
ON INSTRUCTION
CACHE DESIGN

William Y. Chen

Pohua P. Chang
Thomas M. Conte
Wen-mei W. Hwu

Coordinated Science Laboratory

College of Engineering

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
;ECURIrY CLASSIFICATION OF THiS PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4, PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2227 CRHC-91-17

_.NAME OFPERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

6cAOORESS(O_,S_,andZ;PCode)

ii01 W. Springfield Avenue

Urbana, IL 61801

REPORT DOCUMENTATION PAGE

6b. OFFICE SYMBOL

(If ap_lic,_ble)

N/A

NAME OF FUNDING/SPONSORING 18b.OFFICE SYMBOL

ORGANIZATION 7a I (If aDplitable)

8c. ADDRESS (City, State, and ZlP Code)

7b

11. TITLE (Include Securf(y C/aclrification)

ii

lb. RESTRICTIVE MARKINGS

None
3 DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

NCR, NSF, AI_, NASA

7b. AOORESS(O_,$tate, andZIPCodc)

Dayton, OH 45420

Washington DC 20550 Langley VA 20200

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NO0014-9 l-J- 1283

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO. NO.

NASA NAG 1-613

WORK UNIT
ACCESSION NO.

I

The Effect of Code Expanding Optimizations on Instruction Cache Design
I

12. PERSONAL AUTHOR(S)
Chen, William, Pohua Chang, Thomas Conte and Wen-Mei Hwu

13a. TYPE OF REPORT i13b, TIME COVERED 114. DATE OF REPORT (Ye#r, Mo_th, Day)

Technical J FROM TO J 91-05-23

16. SUPPLEMENTARY NOTATION

S. PAGE COUNT37

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if nece_ry arml identify by bl_:k number)

optimizations,cache design, cache memory, C compiler,

load-forwarding i

!9 ABSTRACT (Continue on reverse if r_ces_ry and identify by block number)

This paper shows that code expanding optimizations have strong and non-intuitive implications

on instruction cache design. Three types of code expanding optimizations are studied in this

paper: instruction placement, function inline expansion, and superscalar optimizations. Overall,

instruction placement reduces the miss ratio of small caches. Function inlinc expansion

improves the performance for small cache sizes, but degrades the performance of medium

caches. Superscalar optimizations increases the cache size required for a given miss ratio. On

the other hand, they also increase the sequentiality of instruction access so that a simple load-

forward scheme effectively cancels the negative effects. Overall, we show that with load for-

v,,arding, the three types of code expanding optimizations jointly improve the performance of

small caches and have little effect on large caches.

20. DISTRH3UTtON I AVAILABILITY OF ABSTRACT J21 ABSTRACT SECURITY CLASSIFICATION

13_IUNCLASSIFIED/UNLIMITED [] SAME AS RPT []DTIC USERS =I Unclassified

221 NAME OF RESPONSIBLE INDIVIDUAL J22b. TELEPHONE (InclrJde Area CO<_) I 22¢. OFFICE SYMBOL

I I

DD FORM 1473, 84 MAR 83 APR edctlon may be used untd exhausted. SECVRITY CLASSIFICATION OF THIS PAGE
All other ed,t=ons are obsolete

I_,_CT,A S,q T r T r.n

UNCLASSIFIED

|IGUNITY CLAS/IP|¢A_ON O_ TNll P&OI[

UNCLASSIFIED
sIrCURITY CLASSIFICATION OF THIS PAGE

The Effect of Code Expanding Optimizations on

Instruction Cache Design

William Y. Chen Pohua P. Chang Thomas M. Conte Wen-mei W. Hwu "

April 29, 1991

Abstract

This paper shows that code expanding optimizations have strong and non-intuitive impii-

catiolls on instruction cache design. Three types of code expanding optimizations are studied

m this paper: instruction placement, function inline expansion, and superscalar optimizations.

Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion

inlproves the performance for small cache sizes, but degrades the performance of medium caches.

buperscalar optimizations increases the cache size required for a given miss ratio. On the other

lland, they' also increase tile sequentiality of instruction access so that a simple load-forward

scheme effectively cancels the negative effects. Overall, we show that with toad forwarding, the

three types of code expanding optimizations jointly improve tile performance of small caches

;_ud have little effec_ on large cache_.

ll_de._: term,,- C compiler, code optimization, cache memory, code expansion, load forwarding.

i ll_,t ruct ion placement, function inline expansion. / superscalar optimizations.

)°'[h_: ,tulhors ,tre with t.he Center tot Reliable and High-iertbrmance Conputi g, I'niversit,v of Illinois, {rba.na-

(7Jt,'tJllpiLLglL. Ltlinoi_, t31bOl.

1

PRE'CEDING PAGE BLANK NOT FILMED

Introduction

('ompiler technology' plays an important role in enhancing the performance of processors. Many

code optimizations are incorporated into a compiler to produce code that is comparable or better

than hand-written machine code. Classic code optimizations decrease the number of executed

instructions [1]. However, there are factors limiting the effectiveness of these optimizations. For

example, small function bodies limit the scope of optimization and scheduling. To increase the

scope of code optimization, inline function expansion is performed by many compilers [2] [3] [4].

I,llL_ric,tl inliaing r_q_laces a function call with the function body. To further enlarge the scope of

c_>do _>ptimization and scheduling, compilers unroll loops by duplicating the loop body several times.

l'he l._IP.\('T-I (' compiler utilizes inline expansion, loop unrolling, and other code optimization

I,,cimiqm*.,. these technique_ increase the execution efficiency at the cost of increasing _he overall

code _ize. -Fherefo,e. these compiler optinfizations Call affect tile instruction cache performance.

l hi_ paper exalnine_ the effect of these code expanding optimizations oil the performance of a

wi{l,, _,lJ_,' ,}t in_l r]lction cache configurations. The experimental data indicat,_ thai code oxpandinA

ol}timizations have strong and non-intuitive implications on instruction cache design. For small

cache sizes, tile overall cache miss ratio of the expanded code is lower than that of the code

with,,_jI _xl}ansi{m. Tile opposite is true for large cache sizes. This paper studies three types of

code exi}anding optimizations: instruction placement, function inline expansion, and superscalar

'_[_lillliz,ltiotlb. Ova'rail. instruction placement increases the pertormance of small caches, f'unction

illlil_,, ,.x[)Stli+ion ii+Lt>roves the lJerformance of snla]l caches, but degrades that of medium caches.

%rl[_+'t,,;llal ,,plillliza_i,)lL_ ilLCt'f.'abe.b rile cache _ize r¢,quir_,d tbr a t_iv_'lt mi._ r,_li(). [[owt, x(t. Ihev

:Li_,, ?t_(¢',,s_s_, lh,, _,,(t_t,,_tialitx' of" instruction actress so that a simple Ioad-ti)rw_r(t _-(:hem(, ,'omov(,s

the performance degradation, Overall, it is shown that with load forwarding, the three types of

code expanding optimizations jointly improve the performance of small caches and have little effect

on la,'_e caches.

1.1 Related Work

Cache memory is a popular and familiar concept. Smith studied cache design tradeoffs extensively

with trace driven simulations [5]. In his work, many aspects of the design alternatives that can affect

,he cache performance were measured. Later. both Smith and Hill focused on specific cache designs

para.nleters. Smith studied the cache block (line) size design and its effect on a range of machine

architectures, and tbund that the miss ratios for different block sizes can be predicted regardless of

ttte wot'k[oad used [6]. The causes of cache misses were categorized by Hill and Smith into three

lyp,,>: conflict misse._, capacity misses, and compulsory misses [7]. Tile loop model was introduced

by Smith and Goodman to study the effect of replacement policies and cache organizations [8].

The3 showed that under some circumstances, a. small direct mapped cache performs better than

the _,_,_e cache using fully associativity with LR[' replacement policy. The tradeoffs betweml a

var}e1_ of cache type_ _nd on-chip registers were reported by Eickemneyer _nd Patel [9]. This

work showed that when the chip area is limited, a small- or medium-sized instruction cache is

_[t,, _t_s, cost effective way of ilnp,'oving processor perforntance. Przybylsld el a/. studied lhe

illlora('riolt of cache size. block size, and associativily with respect to tile CP[T cycle time and the

Htain itwnlor', speed iI{}]. This work found that cache size and cycle time are dependent design

t_ral_.,_r>..\lper; aad Flyna iatroduced an utilization model to evaluate the efD('t oftlw b]ock

_iz,, ,_lJ ,,_[1, _ peri_lnta.nce [IJ_ I. -[hey: considered tire a.ctua[physical area of caches _lt(i found that

lal,_,'r' I)lc_ck sizes [Lave better cosl:-l)et'forma.nce l'a.lio. .\11 of these studies a.ssumed an inva.riant

compilertechnologyand did not considerthe effectsof compileroptimizationson the instruction

cacheperformance.

Loadforwardin_is usedto reducethe penaltyof a cachemissby overlappingthe cacherepair

with the instruction fetch. Hill and Smith evaluatedthe effectsof load forwardingfor different

('ache configurations [12]. They concluded that load forwarding in combination with prefetching

and sub-blocking increases the performance of caches. In this paper a simpler version of the load-

tor_vard ._cheme is u.sed, where neither prefetching nor sub-blocking is performed. The effectiveness

,,1 thi_ load-forward technique is measured by comparing the cache perforlnance of code wkhout

optimizations and with code expanding optimizations. Load forwarding potentially can hide the

o[['ect_ t)[' code expanding optimizations.

t)avidson and \aughan compared the cache performances of three _rchitectures with different

in_ll_kctiolt sel cou@exities [13]. They have shown that less dense instruction sets consistently

¢.n.r'_t*- _nore ntetm)rv traffic. The effect of instruction sets of over 50 architectures on cache

portbrmance has been characterized by Mitchell and Flynn [14]. They showed that interlnedia_e

each,, size._ are not suited for less dense architectures. Steenkiste [15] was concerned with the

_,,[a_i,_n.q_ip between the code density pertaining to instruction encoding and instruction cache

performance. He presented a method to predict the performance of different architectures based on

i!l_, ill[.- r';tTo i_f(_ll_' architecttlr_,. I'nlike les._ d,,nso il_Iruction _et_ which Lvpically have hi_hel" miss

t_T. t_,l .lI_all cacho_ !13]. we show that code expansion due to optiulizatiolls improves per[k)rlllatlce

_,l _lt_s_ll cach(_, and degrades that of large caches. Our approach is also difl'erenl front these previous

_l,l_li,,. i_ that *h,' il_>ttuction >el is kept constallt..\ load/store }{IS(' instr_lction set whose code

,i,,l_i1', [- ch_o l_,lhal _ithe ._IIPS R2000instruction sel. is assulned.

_',_t.rl_an al_d t"lv_x_ have simulated the .ff'ects o[classic code optimizations on architecture

designdecisions[16]. Classiccodeoptimizationsdonot significantlyalter the actualworkingsets

of programs. In contrast,in this paper, classiccodeoptimizationsare alwaysperformed;code

oxpandin_ optimizations that enlarge the working sets are the major concern. Code expanding

optinlizations increase the actual code size and change the instruction sequential and spatial local-

ities.

1.2 Outline Of This Paper

Section 2 describes the instructiol_ cache design parameters and the performance metrics. The

ca cite per[ormance i._ explained using the recurrence/conflict model [17]. Section 3 describes the

code _,xpanding ol)timizations and their effects on the target code _nd the cache design. Section 4

l)rese_t_ attd analyzes experimental results. Section ,5 provides some concluding remarks.

2 Instruction Cache Design Parameters

2.1 Performance Metrics with Recurrences and Conflicts

The dimension of a cache is expressed bv three parameters: the cache size. the block size. and the

associativity of the cache [5]. The size of the cache, 2 c, is defined by the number of bytes that can

,il,_,li,ai,_o,lsly reside in the cache memory. The cache is divided into b blocks, and the block size.

2_. i_ the cache size divided by b. The associativity of a cache is the number of cache blocks that

_}_ar,, lh,_ _ame cacho set. A_ associativity of one i._ commonly ca.lied _t direct mapped cache, and

,1, ,()ciativitv of 2 (-/_ defines a [iJllv associative cache.

l l_,, _l_et.ric t_,_'(l in lnanv cache memory system studies is the cache miss ratio. "['his is tire

[sKI i(_ ,)l 1}1(' ll_lltlb_'l ()1' l'el)l'eltces 1}1_11 _tl'e Ilot _alistied by a cache al a h'v_,l oF the lUelllOl'V svstelll

hierarchy over the total number of references made at that cache level. The miss ratio has served as

a good metric for memory systems since it is characteristic of the workload (e.g., the memory trace)

vet independent of the access time of the memory elements. Therefore. a given miss ratio can be

used to decide whether a potential memory element technology will meet the required bandwidth

for the memory system.

The recurrence/conflict model [17] of the miss ratio will be used to analyze the cause of cache

mi.,,,_. ('onsider tile trace in Figure 1. al, a2, a3, and a4 are the first occurrence of an access, and

th,.,v ar_-' _t_iq_Le in the trace. The recurrences ill the trace are accesses as, a6, a7 and as. Without a

c,ml,,xl >witch. all these four recurrences would result in a hit in an infinite cache. In the ideal case

,,l al_ itlfinite cache and in the absence of context-switching, the i_ztrin.sic miss ratio is expressed

3: - R

Po - :V (i)

x_her,, l? i,_ tile t,)lal mtmber of recurrences and .\' is the total nuntber of references. Note that

;,_r a,c,,_, can b_, _t'only two types: either a tl.z_iq_te or a rec_trrent access. Non-ideal behavior

occur> due to con.flict_, and this paper considers only the dimenswl_al conflict.s: multiprogramming

conflicts are considered in [18].

.\ dimel_._ional co_flict is defined as an event which converts a recurrent access into a miss

due J_) limited cache capacity or mapping inttexibility. E'er illustration, con_ider a direct mapped

, ,,oh,, (_r]lt)(),_(,tl _1' Txw)(me-byte blocks as shown in Figure "2. A utiss occurs for recurrellt access ¢l.a

Reference] al a_ a:_ a4 a_ it6 av .s i
J

i _ _Address] 0 1 "_ 3 1 "_ I

l:i_,ure 1: .:kl_ exa, mple *race of addresses.

Reference:
Address:

block O:

block 1:

a I a 2 a 3 a 4

0 miss 1 miss 2 miss 3 * miss

a 5 a 6 a7 a 8

1 miss 2 1 2

* Dimensional conflict

Figure 2: An example two-block dbec_-mapped cache behavior'.

I_,,_'_,=l_, t'eference "4 [)urges address !. from the cache due to insufficient cache capacity'. Hence. _4

represents a dimensional conflict for the recurrence as. The other misses, al, a2, a3 and a4. occur

because these are the first references to addresses 0.1,2 and 3. respectively (i.e.. they are _mique

acce_,ses I. Therefore. the following formula can be used for deriving the cache miss ratio, p. for a

givei, trace, and a given cache dimension:

X - (R- (2'z))
p=

.\,r

CD

: po + -- (2)
.V

wit,,r,, ('/) is the total number of dimensional conflict.,, and f),, is the intrinsic miss ratio.

ht a simple design, when a cache miss occurs, instruction fetch stalls and the instruction cache

wait> f_r 1he appropriate cache })lock to be filled. After instruction cache repa.ir is completed.

the illstruction fetch resumes. The number of stalled cycles is determined by three parameters:

11m illitial cache repair latency (L), the block size. and the cache-memory bandwidth (:3). For a

n]Ii!._[,' I'_-tCtte llliS>, I11{ _ iltllnber of stalled cycles is the initial cache repair la.lencv plus the illlinl)er

,d tr+_lt>f_rs required to repair the cache block. ['he total ntiss penalty willtout load forwarding, z,,.

i> "+\t)l,'_'_l by tl_' ttulnber of total misses multiplied by Ihe number of slalled cycles for _ sinzle

OF PW_R qUALITY

cache miss.

2B

$n ---- (N -- (R - (?D)) X (L-I- T). (3)

1"t"._ i,_ t,he mi_,_-penalkv model u_ed when load lbrw_rding i_ not _sumed. The mi_,_ penalty r_tio

is calculated by dividing the miss penMty, t,_, by N.

2.2 Load Forwarding

Load forwarding wa_ evMuated by Hill and Smith [12]. They concluded that Mad forwarding in

(oml)ination with prefetching and sub-blocking increases the pertbrmance of the cache. In this

pat)el, we use a _impler version of the load forwarding scheme where neither prefetching nor sub-

l)](,(kitL_ is perfornmd. The state transition diatgram for load forwarding is shown in Figure 3.

l'lw il_>lrut'tion ('ache is in the sta.ndbv state initially (state 0). When a cache miss occurs, the

n>lruclion fetch sla[l._ (state 1). Instead of waiting for the entire cache block to be filled belore

I',",UlIlill_. the caclle loads the block from tile currently-referenced instruction and forwards the

i_L>_1,_(_ iort to the i lp, l ruction fetch unit (state 2). Furthermore, if the instruction reference stream

i_ _e,luent.ial. each subsequent instruction is forwarded to the instruction fetch unit until the end

of the block i._ reached or a taken branch is encountered. Any remaining unfilled cache-block bytes

a.ro repaired in the normal manner, and the instruction fetch stalls (state 3). This load forwarding

_, h,'lll, _ r-(luir(> Ilo >tlJ)-block valid bit,_ and l.herefore ha_ a simpler logic for ca.(:he block repail Ihan

-:it) I)i,,ck I)a>,,d >ci,vuw_.

\J, ,'×alnple (_t th,: cache-block repair process with load forwardin< is provided ill l:iKure 4.

I{_q,'t,'lll,, .\]_,Sllll-, ill at illi>>, tt _a[¢e,_ I. (vCl('> b<!F()r,, l.hi> l,'fc,r,m('e i> plac,,d in lira ap})i()p_'iale

i)h,k i(J(ali()n aired i> forwarded to _he fetch Illtit. llelereuce } i> a s(,_llwnlial a('('ess. Ihus it i.,

, (,n.,id,.l,'(i _t_ a hit. I1 is placed in the cache and forwarded to the l>tch unit. l{et)rence Z break.>

OR)_II,!?,_LP¢'V,}E;S

OF P_):'_l'_JAL!_'T'Y

instruction fetch not
unit stalled

instruction fetch unit stalled

hit_ _. S_\ _r
_// _ n '_ whole ////state 3, _

/ [_,, [_ block 4: noloaa,)) /

Fiau:_' 3: State t,l'a.nsition (liagt'am of the load forwa,rdin_ process.

Cycle: 0 L L+I

Status: stallandrepair forward forward

Reference: X X Y

Address: 1 miss 1 2 hit

block0: 1 1
blockl:

Cycle: L+2 L+3 2"L+3

Status: stallandrepair stallandrepair forward

Reference: Z Z Z

Address: 4 miss 4 4

block0: 1 2 3 0 1 2 3 0 1

block 1: 4

2

2 3

Fi._ure 4: Au example of the load forwarding process.

I I_,, >.quential-reforence stream, load forwarding stops, and cache repair of block 0 continues. At

,_1_' L+2. the end of tile block is reached, and the cache repair continues from the beginning of

the, _ache block..\t cycle L+.)'. the entire cache block is filled, the fetch unit continues with the

itc×r i_ruction reterence. The block wrap around time is assumed to be negligible compared to

the total block-repair time t References X and Y are sequential and constitute a run leT_gth (the

lit!lilt.,! ,_l -_'quenlia[i_struc*ious b_,for,, ;_ taket_ br_,uch i of :2.

l',,I the i tt_ each. miss. if the total ilUlllber of bytes where the insrructiotl fetch and cache repair

'}',,_ the, ,_ctual hardware implementation, the cache repai," can start at the beginning el The ca.che block. \Vhell

Ih, h,,z, ltol, ,)t Ihe' in_.Ituction to be fetched is O.llCOUlltered within the cache block, load for',varding begin.- Load

torwitldttiR lerlnmatc., when tile ettd of the' block is reached or when a taken br_tw_h is , ncountered (.'ache rcpaiz

.t,fl,. ,T I1,,, ,_nfl el lh,. bh.k I'h,, miss l,enahy incurr,,d b_ this lilel]l(:,(I is the snln_ ;is the Ollt' t)rc>¢qltc(] il£ I11('

tO

rJ,,,'._t,'_#,L PAGE iS

OF PO0_ QLIALFr_'

overlap is represented by oc[i], the total miss penalty with load forwarding, tl, is expressed as

tt = t,_ - ts (4)

where ts is

(,v-R)+c,_ S[i]

i=1

gS measures the number of cycles saved by load forwarding. Equation 4 is the miss-penalty model

,,.,ed when load forwarding is assumed. The miss penalty ratio with load forwarding is calculated

5v dividin_ the nli_._ penMty, tl. by .\..

l'he saved cycles expressed in Equation 5 is constrained by two factors. First, load forwarding is

limited by the sequentiality of the instruction reference stream. The nlore sequential the instruction

rel>r,-nce stream is. the more overlap between the cache repair and load forwarding cycles that can

}_- achi-ved. Se('o_,d. a>sulning the >equentia.lit.y of t.he referencing stream is not a probleln, load

I_)t\v,_i_lilta is l)erlbrmed only from the misse(I reference until the end of the block. Thus the savings

i> highly dependenl upon the location of the miss within the cache block. The sequentiality of the

refere_lce stream can be increased by appropriate compiler optimizations and this will be discussed

in Se('tion 3. This second factor is highly variable and dependent upon the instruction reference

stream and the block size.

3 Optimizations and Code Transformations

3.1 Base Optimizations

\ >*:_l,dard s,l ,)f classic ,)I)timizations is axailal)lo in ('otnmercial coml>il,rs lo(t;_v (seo l'a.ble 1).

[Ik,* .-_m[,,fill(,>(, ,)l)lilltization._ is t.o reduc{ _ the execulion tittte. Local ot)limization,_ a.re lmrlot'nmd

11

Local Global

constant propagation

copy propagation

common subexpression elimination
redundant load elimination

redundant store elimination

constant folding

strength reduction

constant combining

operation folding

operation cancellation
dead code removal

code reordering

constant propagation

copy propagation

common subexpression elimination
redundant load elimination

redundant store elimination

dead code removal

loop invariant code removal

loop induction strength reduction
loop induction elimination

global variable migration

loop unrolling

Table [: Base ()ptimizations.

withill ba.qc block>, whereas global optimizations are performed across operations in different basic

}_l_(k>. I,_ thi., i,aper, these classic code optimizations are always performed on the co,npiled

t)l'()_ [';t lll_,.

3.2 Execution Profiler

tix,,_ ,,_i,,,l protili|_z i_ performed on all measured benchtnarks. The [MP.-XCT [proliler transtate._

,':_]k l a_j'_ot (' l)r,_l.allt ;nro an e(luiv;t[Oll1 (' l,.ogr:_nl with additional probes. When the equivalenl

(' program is executed, these probes record the basic block weights and the branch characteristics

1_,, _,_(1, basic block. Profile information is used to guide the code expanding optimizations. The

profi}_, information is collected using an average 20 program inputs per benchmark. An additional

i l_]_,_! i-, I]wn u._e,I _,, t_wasul,, I }it cache pOFfOl'lll&llCe.

J'2

3.3 Instruction Placement

Reordering program structure to improve the memory system performance is not a new subject.

ht mole receut litet'_ture regarding instruction cetches, iustruction placemeat h_s beeu shown to

improve performance [19] [20] [21]. The IMPACT-I C compiler instruction placement algorithm

improves the efficiency of caching ill the instruction memory hierarchy [19]. Based on dynamic

profiling, this algorithm increases the sequential and spatial localities, and decreases cache mapping

conflicts of the instruction accesses.

t:,)r a _;iven function body. several steps are taken to reorder the instruction sequence. For

_+ach l'uuctiou, basic blocks which tend to execute in sequence are grouped into traces [22] E23].

L'rac,_s are the ba.sic units used for instruction placement. The algorithm starts with the function

+mtt'aitce _race and expands the placement by placing the lnOSt important descendent after it. The

I)laceme_t continues until all the traces with non-zero execution profile count have been placed.

l'r_c++s with zero execution count are moved to Cite bottom of the t'unctiou, resuhing in a smaller

{ ' t 1 .+ ` { ' t i X r + ' fllttCtiOLl [)OdV.

l{eor(lering the basic blocks does not increase tile program size significantly. The overall se-

queu_ialitv of the resulting code is increased (i.e. the number of taken brauches are reduced) due

to tl>, formation of traces, and this may increase the need for a larger cache block size. For the

>_t.ltte cache size. an increase in block size translates to a decrease in tag store. [he overall locaiit.y

'_t" r}l+' I',r',_llltlill_ (++)+]+'}:/ increa.>ed due t.o the p]acemeut of u£ore hnt)ortaut +races _tlt the begJuuJJtg

<>I I It,, +,l n,c't loft.

13

3.4 Function Inline Expansion

Function inline expansion replaces the frequently invoked function cMls with the function body. The

importance of inline expansion as a.n essential p_l'_ of _n optimizing compiler l,_s been described

by Allen and Johnson [24]. Several optimizing compilers perform inline expansion. For example,

tire IBM PL.8 compiler does inline expansion of all leaf-level procedures [2.5]. In the GNU C

compiler, the programmer call use the keyword inline as a hint to the compiler for inline expanding

tuncliot_ calls [2]. The Stanford MIPS (2: compiler examines the code structure (e.g., loops) to

,ho,_>_, the fu,tction calls for in[ine expansion [26J. The IMPACT-I C compiler has an algorithm

that _tutomaticallv performs inter-file inlinmg assisted by tire profile information where only the

imtn,l'_nt functioh (:a[| sites _re considered [4]. Inlining is done primarily to enlarge the scope of

_)l)_ittiizat.ion and _che(lnling.

Ninc_, the catle_, > expanded into the caller, inline expansion increases the spatial locality and

(l,wr,_s-_ the number of function calls. This transformation increases the number of unique ref-.

ol'-_,+,_, which may result in more misses. However. a decrease in the miss ra.tio may also occur,

because without inline expansion the callee has the potential to replace the caller in the instruction

(a('h,,. With inline exp_msion, this effect, is reduce(l. Inline expansion provides large functions to

,,l_lar_,, ,he size ()f traces selected. This enlargement of function bodies heli)s to filrther the effec-

liv'*'ll('s_, el instruction placement. With an increase in the sequentiMity of the referencing stream.

all illt[)rovelllOllt ill tile performance o{" [oa.d forwarding can be expected.

3.5 Optimizations for Superscalar Processors

'_il_,. I,_,i(hK,(k> ,ypically (outait_ li:w inslt,tttion_, they(, in little parallelism within a basic block.

l'_)l" >I1})_'I'>C_I[}II" pl'()('e:',>Ol'S, lllCLlt/ COde traltsforlllatiollS art> llt?cessalTv il_ Oldt.'f Lo iltErelJ_se the 1111111-

1.1

ber of instructionsavailablefor scheduling. Many researchershaveshownthe effectivenessof

these optimizations [27] [28] [29]. Although these optimizations are frequently used for super-

_calar processors, these optimizations are also useful for scalar processors (e.g.. MIPS C compiler

performs automatic loop unrolling [3]). The following superscalar optimizations have been imple-

mented in the IMPACT-I C compiler and are performed in addition to function inline expansion

and instruction placement. They have been shown to provide significant speedup on superscalar

proce._sors [30].

Super-block formation: A super-block is a sequence of instructions that can be reached only

h'om the top instruction and may contain multiple branch instructions. A trace can be converted to

:_ s,,I_er-block by creating a copy of the trace and by redirecting all control transfers to the middle

_,1 the, lra.ce to the duplicate copy: thus. super-block formation, or trace duplication, increases code

oplil_ization and scheduling fl'eedom.

Loop unrolling: The body of a loop is duplicated to increase the number of instructions in

rh_., s,lpe>block. _[b ,tnro[1 the loop :V times, the body of the loop is duplicated (N - 1) times. For

multiplo instruction issue processors, the IMPACT-[C compiler typically unrolls small loops four

,rmor' times. For la.rger loops. :\" decreases according to the loop size.

Loop peeling: Many loops iterate very few times, (e.g., less than ten). For these loops, loop

Illtl'()llilt,'_' and _oflwal'e pipelining ar_, loss effe<*iw_ because lhe execution tim,., spenl in the, parallel

,,,ct i,_lt I_ 1_ooptimized loop body) is llOt substantially longer than ill the sequential section (t he loop

pl,J+>_,l,, ;_.nd epilo.u_ue). An _lt.ernative apl>roach to loop unrolling is to peel off enough iterations.

.,icl+ t}Lat the loop lyl>ically o×ecut++> +ts a straight-line co_le.

Branch target, expansion: Instruction place]lie.Ill and super-bh)ck forlltation introduce many

}_aiJ,'lJ illslru('tions. Branch target _xpansion helps 1o eliminate the llUlllbel" of taken branches by

15

object code ,size [instruction

program description (bytes) 1 references

cccp GNU C preprocessor 20400 2.89 z 107

eqntott truth table generator 15256 1.47 x 10 s

espresso I boolean minimization 61264 5..18 x 10 r

mpla pla layout 138808 1.07 x l0 s

tbl format table for troff 24804 3.08 x 10 r

xlisp lisp interpreter 31920 1.46 x 108

yacc parsing program generator 21320 3.47 x 10 r

Table 2: Benchmark program characteristics.

c(,t)yin _ the target ba,_ic block of a frequently taken branch into its fall-through path. The nunibe)'

<)1'static in._tructiot,, increases due to this optimization.

Super-block formation, loop unrolling, loop peeling, aud branch target expansion increase the

_oqu('lL1ialitv of the code. Loop unrolling and loop peeling decrease both spatial and temporal

Iocali)v. A reduction in cache performance can be expected due to a decrease in spatial locality'.

l'ho increased code size and increased unique references can be expected to increase the cache size

re(I tlil'OllleIlt,

4 Experiments and Analysis

4.1 Benchmark Programs

lable 2 shows Lhe benchmark programs that are used in this paper. 'fhree of the programs,

, ,ttJl,,ll. ,..l.U',._..so. ;In(l rli.sp, are fi'on, The St)tO('2 b(enchmark He,) [3[]. l:our ()ther (' programs.

:"P/"- """/*. q(u:,, a_l(I tbl, are colnmonlv use([scalar i)rogra.ms. The oSfl('l ,ode ,_iz,: column give>

r!_,, ,r,,-i;,)tl ,iz(,]I, I)v),,s wilho_lt ally ('_)(Io_,xl),_ll(Ii,tg o l) itnizati()i)s. lh(' six,,_,f'lhcse h('_lcl_,tJark

,,_,.rsLtv _)t lllim,i, is., member of SPE('

lb

C:U P'J<_.R' _'_ALITY

programs are large enough for studying instruction caches. The instructio_t re]'e'rences column gives

the corresponding number of dynamic instruction references. These instruction references are for

tile full run of each benchmark program, no samplin_ or reference partitioninz is used.

4.2 Measurement Tools

The measurement results are generated by trace driven simulation. To collect the instruction

trac+,_, the compiler's code generator was modified to insert probes into the assembly language

p,'ograln. Executing the modified progranl with sample input data produced the instruction trace.

l'h_+ i t_ce_ consisl of the IMPACT assembly instructions (LCODE '_) witich is similar to the MIPS

R20(}0 assembly language [;/2].

5ittce t }le perlbrlttaltce nunlber tbr many cache dimensions are needed, a otte [)ass cache simulator

]> _>,,d. The each+, simulator for the oxperiments uses the recurrence/cotlflict mode] [17]. where

,ttlx on' i)a:,s over the instruction trace is needed "co simulate all cache dimensions. Similarly.

l t_e inl'ortnation required to derive tniss penalty with load forwarding is collected for all cache

{timettsioas. tn this paper, associativitv of one-way, two-way, four-way, and fully-associative are

,iHtlttaI++d. [he block sizes considered are t6. a2, (i4. and [28 bytes. The cache sizes range from

IK to 128K bytes.

4.3 Empirical Data and Analysis

I"<)r t l_,, i_,rl)O_o _fl _,Xl).rimentation. the code +_xpamling optinlizations (le>cril)od in Nectiou 3 are

n_zlliiz_'_] into four ,)plitnizatiott levels with increasiLtg Iutlctionalitv: ,_ (ttt_ code expat dil g op-

il]li.,_.l i(m i.]*[+ilt'-t t'+l('+ion l)[ac++ttieJtl }. it, (l'uncti(:,n in+in<' expat+sion l>l_ts iE,st t';t,:tion l>lacemen+).

.... 7+

I (() I) 1{ _l,'+,,"tl Im,nl a! +,,m I,'---+tvai[at'+l(: +re, all illt,¢:llla[r,c+p(Jr't

17

program

cccp 2% 36% 54%

eqntott 1% 2% 7%

espresso 1% 10% 60%

mpla 1_ ! 13_ 41_

tbl 3% 22% 67%

xlisp - , 1% 18% 49%

yacc 4% 21% 110%

average 2% 17% 55%

Table 3: Accumulated code size increase.

and -, I superscalar optimization, functiou inline expansion, and instruction placement). Experi-

ltl_,tJt .. ,re-, conducted by varying tile optimization level to measure the incremental and accumulative

,,tf_wl > _>t these optinfization,_.

General Effects

It_ ,)rder to qttat_tifv the effect of optimiza.tion on code size, the object code size was measured for

,,,oh i+,_++l(ffoptiitli×ati_)tl. Table :] shows rite relative object code size for ++a.choptinfiza.tJon level. All

r'/ll i<+- ;t lit] [)PI'CalII _q,ge> ill+ a (7()tllplll+t:'([[)}isec] oil El/(, (o(](+ 5}z(+ without code +_x[)all(liltg optimizatiou.

ltt,ll_+cli_m placetn,+nl increases the average code size bv 2_. Function inline expansion results in a

15iX <ode expa.nsion after instruction placement, as indicated by' the 17_, incre_+se in average code

iz+,]tJ shy i1+ columtl of Table 3. Superscalar optimization further increases the (:ode size by 38.

_LItet' bot.h hlline expansion and instructioti placement. The total code expansion due to all the

It,r,,,. ,>l>t i lltizat i_>l,> i> .-+.5t7<.which reinforces the coucern that these optimizatiotts may degrade tile

iIj.l I _t iol, t'ach+ + p+'l'tol'illalt('e.

ill,' ill',t ruciit_lj wor],:ill K "_c't of a [)I'ogl'_-t,ltI is del+itted as tile sJnaJlest l'lll],y-;lS,',ociativc ilt,',l,l'll('kiOll

,,_1_,' ',,.tlicii achi,'x,'> a 0.1_Z miss ratio for the prOgt'atttl. It. provides a relative, mea+._ut'<, of c_tch,,

program

14

14

15

13

ii

cccp 13 13 i3 13 13 13

eqntott 10 10 10 10 10 10

espresso 14 14 i4 15 14

mpla 14 13 14 15 14 13

tbl 14 14 15 15 14 14

xlisp 12 12 13 13 13 12

yacc 'li 11 12 13 12 11

.92 13 I 12 12 12• , 10 10 10 10
I

14 15 13 13 13

15 14 14 14

15 14 14 15

13 13 13 13

13 '11 11 11

13 1311210 11 1l

14 13 13

15 14 14

15 t4 13

14 13 13

13 11 11

12 13

11 11

13 14

14 15

14 15

13 14

11 13

Table 4: Working set size for various block sizes in log2 cache size.

l proyrant

cccp

eqntott

espresso

mpla

tbl

xlisp

ya.cc

no pl

5.1' 7.5

3.8 5.9

6.4 8.4

5.1 s.9
3.5 4.9

4.2 6.3

.5.9
4.6 6.8

i_ 3 U

47 7.7 50 10.5 105

53 5.9 54 5.9 54

31 9.1 42 14.8 131

76 9.9 96 17.8 253

42 6.4 84 13.1 278

50 9.5 129 10._ 159

47" 611 51 13.0 223

48 7.8 70 12.3 167
I

TM)Ie .5: Average number of sequential instructiolls.

,izo req,]irement by programs. Table 4 presents the instruction working set. size of each benchmark

for all optimizatio_t levels. All numbers presented are in log2 scale (e.g.. 14 is a 16K byte cache).

The largest workinK set size needs a.t most a 32I(byte cache. All miss ratios for the larger caches

are considered negligible, and for this reason, cache sizes larger allan 32K will generally not be

i()_I_ ill this paper. Instruction placement and function inline expansion haw_ very little effect on

h,-, ilL:l'uction workin_ set size. Sut)erscalar optimization approximately double the instruction

w,_rI<il,_ :_¢,1_iz-. Thi., is expected since sul)erscalar Ol)limizalions I'(_Sl.l[l. 5 ?It l lte largest ilttreasc ill

19

program I baseno

cccp 2.89 x 10 r

eqntott 1.47 × lO s

espresso 5.48 x 10 T

mpla 1.07 x l0 s

tbl 3.08 x 107

xJisp 1.46 × l0 s

yacc 3.47 x 10 T

pl

-0.27

-0.42

+0.18

-0.62

+0.21

- 1.84

-1.00

?_ change

I in
-2.01

-0.43

- 1.23

-6.18

-12.3

-14.6

+0.13

_u

-3.17

-0.45

-3.33

-10.1

-16.2

-16.7

+6.53

Table 6: Number of dynamic references.

.\4 qliscussed in 5ection 3, all of the three code expanding optimizations can improve tile sequen-

rialitv ,)t instruction access. To quantify this effect, the average number of sequential instructiol_s

+'xecuted between taken branches was measured. As shown in Table 5. all of the three optimizations

iu_p,c_v,, the sequmltiatity significantly. With all optilnizations, tile average number of sequential in-

_t ruct i_ma increase,l [rolu 4.6 to t2.3. This dramatic increase in sequentiMity suggests that schemes

._t,h a> t_m,t t'or_arding may be able to offset the negative effect of code expansion. We will further

,,xpl,,_-,, _his subject later in this section.

klt hough the sl atic code size increases signilicantly after the code expanding optimizations, the

Jtumd)er _t dyn_tmi, insl ruction reterences tends to decrea.>e with each _tddJtional level of optimiza-

tion.,. Fable 6 presents the number of instruction references for each benchmark program. Tile

[,tr_,,.* ili_provenlezll lc._ult._ l'rottl function inlil,_' *'×pansiou: t.hi> i_ due to the i_tcrea.Mng opporl uliitv

t(+ ;tl>f)l.v <'lassie](>(;tl +-lltd global Ol)titnizaliot+s tat tlt(, inlit,ed version o[fit(, ('(.)([e ;+l+ll(]tc, (qhtlitia.l,<-'

it,>li',+(+ti<m._ rhal ,ave ;uld restore registers across lttnction boundaries. The purpose t'of super-

-,;,]++r ,,t,l+ltli×:,ri+,+,. i> t_ ,,£wover I>atall+,listtl :l,t_] >cheduline. opl_oltl,,+ili++>. N,,,' h,nv,+v+w, tllal

-al]>+']-+a,]al _+pliltLiz;tli_lt._ Ott_'ll I'('stI]l ill at (lecli+as_, ill _'he ItLInlb_q + of ill'_ll'tlcliOll I'eI}+I'OILCOS. "l'llO

c,*ttt lii>,ll i,*lt of ilt>_ I'l_('l iot! l)lac_.,ltlelll t.o l.}le llUttlbO|' of (lyt_atnic l'elet'+_t_ce>]> slt_;tl] whet| <<m,l)al+ed

2O

p tog ca l?

cccp

eqntott

espresso

mplu

tbl

xlisp

yacc

cccp

eqntott

espresso

mpla

tbl

xlisp

vacc

16 byte block 32 byte block

o t ell i _ ,,o I pl l i'' _"
840 800 890 1120 450 430 480 590

_oo 500 _oo _oo 200 300 200 200
2170 2170 2320 3290 1140 1130 1210 1740

3500 3300 4200 5620 1900 1700 2200 2970

131012r0 15102000 Ggo 660 7so 10r0
800 700 800 1100 400 400 500 600

980 91o lO4O2020 530 48o 5_olO6O
64byteblock II 1,_8byteblock

240 230 260 310 140 130 140 170

100 200 100 100 90 100 100 90

600 600 640 940 320 a3o 350 520'

i000 900 1200 1600 600 500 700 870

360 350 420 570 180 180 220 300

30'0 300 300 300 200 200 200 200

290 250 300 570 160 130 t60 310

Table 7: Number of unique references.

ro the _)ther opt imiza.tions since instruction placement only performs code reordering.

1 lie /qUill of the number of recurrent references aad tile number of ,uiqu(references constitutes

l[te l,lllu})er o[to_al dynamic references. Table 7 show_ that the nulllher of tt_irlue references

increases for inlininod and superscalar optimizations, but decreases for instruction placement. The

absolute difference within tile unique references does not constitute a significant variation in the

tuis._ ratio since 1he difference is insignificant when compared to the number of d.vnamic references

iu Table 6.

Instruction Placement

21

'7-

5-

4-

% miss

3-

2-

i-

2k 4k 8k 16k

-3c .lock

without placement

:.k 2k 4k 8k 16k ik 2k 4k 8k 16k

_2D C_oc.< 642 s_sc<

3:rec _. :4appe_ Cache

Figure .5: .4.ver_ge effect of placement.

lk 2k 4k 8k "6k

12_S sis<;<

4

:2

8

miss

6-

2-

with p!acemee :.

>', 4k 8k !6k "k Pk 4k 8k 16k _:< 2k 4k 8k !6k -_. 2k !k 9!< "6:<

::_ :. _:_':.< :7'.'-_ oioc< £_:b blsc:< /:w=_ c . ?c<

.),)

_ dimensional miss ratio without placement

_ dimensional miss ratio with placement

intrinsic miss ratio

ik 2k 4k 8k 16k 32k

16b aloc_

ik 2k 4k 8k 16k 32k

32b Oicck

Direct Mappe_ Cache

Ik 2k 4k 8k i6k 32k

6,I_ eicc<

Figure 7: Effect of placement on dimensional conflicts and unique references.

Figure 5 shows the effect of instruction placement on the average cache miss ratio 4. On one hand.

instruction placement reduces miss ratio for small caches (IK and 2K). For example, the ufiss ratio

of a 114 cache with placement is comparable to that of a 2I{ cache without placemenl. Oil the

_lhel [land. instruction placement has very little effect on large caches (SK and 16K). The same

*rend can be observed from the worst case miss ratios in Figure 6. The worst case miss ratio is the

nnt,xiln_tl lniss ratio observed among all benchmark programs. Note that the benefit of instruction

placement is more pronounced for programs with high miss ratios. This is a very desirable effect

_ince il increa, ses the stability of ti_e cache peribrmance.

l,_ ;m;,lvze why i,struction placement improves the performam:e of small caches, we have mea-

>,lr_,_l l l_e misses dlte to unique references (intrinsic misses, see Section 2) and those due to dimen-

,i,_l_J , lillic_s ldillletlsiona] misses). l']le loe_ plo_ of Figure 7 shows tim c_mtributiotl of_mc}l 1,3

\\'' tound that the. eIfect o[instruction placement on the cache miss ratio of other associativities closely follows

th, I i,,mt ol the, dire,'I mapped ,:aci_e clt._e, lherelot'e only the' direcl nt&pped cache resu]l> atre pl'e,belitud

the miss ratio with and without placement. The black bars show the intrinsic miss ratio. Figure 7

ctearly indicates that instruction placement makes negligible difference in the number of intrinsic

misses _. The shaded bars in Figure 7 show the dimensional misses. As can be seen in the fi_ure.

the reduced miss ratio after placement is due to decreased dimensionM conflicts 6

The changes in program behavior due to instruction placement explain the discrepancy between

small and large caches. The working set of the benchmark programs do not fit into small caches.

I'hi_ accounts for tile high miss ratio of the smM1 caches, instruction placement separates the

trt_quehtly executed code segments from those executed infl'equently. This helps the smal] caches

_(. a ccollm_odate 1lie frequently executed portions of the programs. Therefore, the performance of

_ulall caches improves significantly after instruction placement. Since large caches can accommodate

lhe working set of Inost benchmark programs, the compaction effect of instruction placement does

tier make a significant difference for these cache sizes.

Function Inline Expansion

l"_lJl(lioli inline expansion has two conflicting effects on cache performance. On the positive side.

x_ith inlining the caller and callee bodies are processed together by instruction placement. ['his

a llot_ _ instruction placement to significantly increase the sequentiality of the program (see Table 5).

\ki,,,r, _}_,, cache ll_i.,_ ratio is hi_h. the increased sequentiality reduces the miss ratio bOCZlUSO it

ill('l'_';I._,oS tile nltill})_q o{" useful bvtes transferred for each cache miss. Oil the negative side. inlinin_

ilL, t+,;i,,,> Tilt+ xvorkiliK s_,l size (see Tables 3 attd -l). If tile working set fit,> into a cattle betk)rt, inlillittg

"1 h+" reader is encouraged to derive the intrinsic miss rati,J by dividing the Imtnbe-r of unique references m [':lbh + 7

,_ilt_ Th, imnlb.l ,_t,13n.tnli_ refer.nee> in -l'M)ll: t;.

'",iit, lh_tf ["ie. lll', 7 Is in log some. which _, necessary IO Illltkc tile illT. rlllSi',: Iltl._._ I_|llt, vi.-,il_le i{ow<'_,ev, the 1%¢

-, ,H, II--,_ mlt_,ltilie> the miss ratio ot larry' caches ["or example, iLlst.ruction placement se_'lll tO llt;Lke colnp;tral)te

,lill,'l, H,, lt_l >.Jail c;_cht'_ ,1I'2 and 21(i and large caches t t6l(;Irlld ,_21"_) ill [:igul't: 7. Itowcve,. II i> _'[cat tlom

[i4Ul, -, lhal iilsllu, troll pl;l(eHlelll has >t, lOli_, ef[eci oil Sill)Ill cgu,'h{'b i)lll negligible viSect ,m large cache.-

24

5u

3-

% miss

2-

lk 2k 4k 8k 16k

16b block

_ with placement

_wltn inlin±ng _[._ p.uceme:',t

lk 2k 4k 8k 16k ik 2k 4k 8k 16k

32b block 64b block

Direct Mapped Cache

!k 2k 4k 8k 16k

!28m, Dlock

Figure 8: Avera_ge effect, of hflining and placement,

_imensionai miss ratio wltn placement

dzmenszDsal =ins :a_=o with _nlinzng and p:acemen=

i_tYz_sic hlss 7aLiG

_-k 2< 4k 8k 16k32k64k

i Cfl ;3 _ 3,CK

ik 2k 4k 8k 16k32k64k

Dlrec: Xappee Cache

ik 2k 4k 8k 16k32k64k

t)_ur,' !_: Effect of iulJning an(I placemenl. ()u Himensional conflicts _.l_l !lui(lue refereu(:es.

25

6_

5-

4-

3-

miss

2-

I-

k 2k 4k 8k 16k

6b olock

with inLining and placement

super-scalar ,optic, inlininq,

!k 2k 4k 8k 16k Ik 2k 4k 8k 16k

32b Olock 64b block

Direct Mapped Cache

and placement

ik 2k 4k 8k 16k

128b block

Figure, [0: Effect of superscalar optimizations fox" direct mapped cache.

but does not after inlining, the cache miss ratio may increase substantially.

[' i_4ures S attd 9 show tile effect of inline function expansion olt cache performance 7. 'File cache

lllis> ri)_ io i,_ relativ(-lv high for small caches before intining. In riffs range, the increased sequentiaiity

t,,duc,_ the cache lnis,_ ratio. In the middle range (SK. 16K. and 32K). the working set_ of some

be, ltcl_lHarks fit ill the cache before inlining but not after inlining. As a result, inlining increases

cach,, miss ratio. The (J4K cache is large enough to accommodate the program working set betbre

,,lJ(l _t](,l' iulining,. [herefore, inlining has negligible effect in caches of size 64I(and great.er.

Superscalar Optimizations

Fi_ur_ [0 shows the changes in the cache miss ratios when superscalar optimizations are applied

_,l)(,t it_lix_ing and placement. The miss ratios are consistently higher with superscalar optimiza|ionb.

l]),,l_,l()r'(,, a lar_et cache is required to compensate tbl' the efDct of superscalar optimization,_ lo

)));_i))T;_il, Ih_, sal)lo miss)'atio.]'his information is ('o,sisleltt with the working set size cah:ulat(,d in

\- I,.h>),. the t t(q,d lor higher set a:....ociativit, ies i_ vetv ch).-.e to the resu[l,_, for diFecl mapped cgtchc. Thus, o.ly

th(,ltl_,l maq)l)ed l<->ultn ,tl,. l)resenh:d.

26

_ dimensional miss ratio with inlining and placement

dimensional miss ratio with super-scaiar optl.,

;'2227ZZ_22_ inlining, and placement

intrinsic miss ratio

% miss

0.01

lk 2k 4k 8k 16k32k lk 2k 4k 8k 16k32k

Direct Mappec CacZe

ik 2k 4k 8k 16k32k

640 _:oc<

Fb.ure t l: Effect of superscalar optimizations on dimensimlal conflicts and unique refereuces.

Table 4. If the block sizes are kept constant, the required cache size to maintain the same level of

miss t'atio is approximately twice the cache size over that of code with no superscalar optimizations.

t-i-,_r_, I I indica.tes that superscalar opdmizadons increase tlle number of unique references.

I_ut tim i,crea.se is not significant. Therefore. it is the increase in code size radter _;han the increase

iu t_l_iq_L__references that is the primary cause of reduced cache performance.

All Optimizations

lita,lr,, Id shows the cumulative effect of all t_ptimiza.tions on dir_,ct mapped caches. Intuitively.

,_tmll,,r ,ache., sho,_hl perform worse on oxp_tnded code because of increase in the expected numb(,r

l diiil,nsiona[con{tict._. However. the experimental da.ta show the opposite. [a'or the tk and 2k

c;,ct_,,_, l lt_, miss ralio of code withoul code expanding Ol)timlzations are larger 1hart the miss t'a_ios

,_1 co_l_. \viTh codo _xpan(ling opt.imizations. SequentialitT, is increased by Sltl)Orscalar optimizatious.

h,l> f,, larger block size. the decrea.se in miss ratio is due lo sequeatia.litv. .(_'._.,,, for 11< ca.the in

27

_no oplmization

_,22729,22-2_with placement

7_ _22_,_ with inlining

ll _ with super-scalar opti.

4

_ 2_ 4k 8k "6k 'k 2_ 4k _k '614

16s O.=,c< 32b bicc_

[;irec< Macpe_] Cac::_

5

2

i

o4m o_oc_ 128U m_oc_

Direct Mapped Cache

I:'i_ur_ 1'2: (:umulative effect of all opt infizations for direct mapped cache.

2,q

Figure 12.codewith superscalaroptimizationshasa largerdrop in missratio goingfrom 64B to

[28B blocksizethancodewith nooptimization).Forsmallblocksizes,thepositiveeffectof higher

sequentialitydisapears,and the negativeeffectof codeexpansioncausesan increase in the miss

ratio. However, the increase in code locality by function inlining and instruction placement is still

large enough to offset the negative effect of the code expansion, and a slight decrease in the miss

ratio can still be seen in small caches.

Load Forwarding

l'he results of load forwarding are presented [1l Figure 13. Since superscalar optimizations have

the worst results thus far. they are used here to evaluate the effectiveness of load forwarding. The

iltili;_l tltelt|orv repair latency (L)is assumed to be 4 cycles, and the cache-menmry bandwidth (.3)

i, a>>_lE_o(I to be 1 bvtes. Equations 3 and 4 are used to calculate the relative rniss time pmmlty.

l.oad forwarding r*'duces the miss penalty and effectively upgrades the cache to a performance

I_-,vel si]nilar to a non load-forwarding cache of twice the size. For example, assume that 21,2 direct

mapp_'d cache with block size of (54 bytes is used with load forwarding. Using the same block size.

l I:, lJli.,_ penalty is al)proximately the same as that of a. 4K cache without load forwarding. "_Vhen

superscalar optimizations are used, the designer can either double the cache size to maintain the

anl,l)orformance level or use load forwardino_ and achieve _he same result.

.\llother observation is that a block size of 128 bytes has consistently higher averapde miss

p,,llal_ i,,_ 1ban for _ther block sizes. This can be explained by the number of sequential ins1 ructions

,t,ox_B_ ill lable 5. The overall average run length for superscalar opt.imiza_ion._ i,_ approximalely

[2.:$ il,>li¢l(xion> (1!).2 bytes). [t i._ possible lha.t the first non-sequenlia.[mi>> will ltol [)_' ill I.he

l)_,_i],l,ilt_ of_he block (see Figure [-[). By using the symbol R fbr the run length, a,nd /as lhc run

29

I[_$6

PENALTY

RATIO

_-.4-

1.2-

0.8-

0.6-

m

m

No _oad forwarding wltn no optimization

Load forwarding with no optimization

Nc toad forwardina with a]! optimizaviens

Load forwarding with ai_ optimizations

0

_ .4-

ZISS

9ENALTY

_Ai i(" _.8-

i. 6-

"k 2k 4k 8k 18k ik 2k 4k 8k "6k

6c o_ccK 32b e[oc_

Direct Mapped Cache

._ 2k 4k 8k !6k ik 2k 4k 9k 6<

Direc: Mapped Cache

[-'igur_, 13: Effect of load forwarding fox" direct ma_pped cache.

cache block N cache block N+I

instruction stream [only one block is fetched

i instruction stream] two blocks are fetchcd

t"igur_, 14: R_q'erm_ce stream and cache block refills.

3O

lengthstarting locationwithin thecacheblock,the total number of cache blocks involved in a miss

is formulated as,

r(/, B. R_ = [(l + R)_

The ceiling function is used to include all used cache blocks. For each run length, there are 2a/J

starting locations. Assuming uniform distribution for all starting locations, the probability of each

starting location would be /3/2 a. Therefore, the penalty of each cache miss for a particular run

length i,_ shown as Equation 7.

1 2a

P(R.B) : _ 2B/,_ X {F(I.B.R)x (L+ _-)- R} (7)
l=0

l:ot ,inlplicit.v. aa integer approxintation of tile run length is used. Instead of [2.3. tile value of 13

i_ u.,od for R ill Equations 6 alld 7.

P(13.4) = 19 cycle.: (s)

P(13.5) = 17 c.qcle._ i9)

P(1"3, 6) = 22 cgcle._ [0)

P(13, 7) = 36.5 cycle.: it)

The calculated values follow the trend in Figure 13 closely. For B equal to 4. 5. and 6. tile load

lurwarding mis,_ penalties are relatively tile same, with B equal to .5 (tile lowest), and B equal to

i !t h{' ILexl lowesl .,. For B equal to 7. the load t'orwar(ing miss penalty is noticeably higher than

lh-<_+l+-l block siz,s, aud this can also be showu by using Equatiot_ 7.

I f_,, tI,i>> pm_alty fbv each run e)f'sequential ac{',,sses is dominated by *hr+'+, vahms: t 1,,, ini+ial

1<>_,_t{I,,l_,v. tIw t,ult,ber of refill cycle._ with load forwarding, and the number of refill cycles without

loa.d tiorwarding. _\hile the initial load delay is dependent upon the hardware design technology, tim

16 byte block

i Ir222227222_ 32 byte block

64 byte block

0.3 _ 128 byte block

'_TSS

PENALTY

L : 2 L = L = 6 L = 8 L = I0 L = 12

Direct Mappe</ Cacf_e

Figure I5: Effect of initial load delay (4k cache).

non-stalling and st_Jling refill cycles are related to the block size and the instruction sequentiality.

I{eti)r,, the initia.1 load delay reaches a certain threshold value, the number of refill cycles will have a

dominant effect upon the miss penalty. Larger block sizes will tend to halve higher wasted number

,,l,_qill cycles than smaller block sizos. However. larger block sizes are penalized less for the initial

hm,l (hqa_v Tha]_ smaller block sizes. Figure I5 shows the effect of varying the value of the initial

h)ad delay on block sizes for a 4k cache. For each value of L, the miss penalty ratio is compared

het_,,,,n tour block ._ize_. For _mall vMues of L, l(J aud 32-byte blocks perform the best. But for

larger values of L. 64-byte block performs the best. This is also verified by Equation 7. Here. the

'.;,lu,.,_i 1, i_ _'_ r,, 10.

P([3.-I = 43 cgcle., 12

P(13.5 = 32 c}Icl_-s

P(13.5) = 32.5 cgch-._

P([3.7) = 44.75 c l/ch.._

13

l.l

15

32

FromFigure 15.for initial delayof 10,blocksizesof 32and64 byteshavesimilar performances.

,_nd block sizes of t6 and 128 bytes have similar performances.

As the value of L increases, the performance of the larger block sizes increases while the perfor-

mance of the smaller block sizes decreases. It is not until an initial load delay of 40 cycles before

t28-b.vte blocks start to out-perform other block sizes. For smaller cache sizes, the miss ratios are

the dominating factor, and a smaller block size should be used. On the contrary, for larger cache

sizes, since tile miss ra_ios are very small, larger block sizes are preferred.

5 Conclusions

['hi.. paper analyzes the effect of compile-time code expanding optimizations on instruction cache

¢l_,si_I.. We first show that instruction placement, function inline expansion, and supersca,lar op-

_imizations cause substantial code expansion, reinforcing the concern that they may increase the

caclt_, _iz(, required to achieve a given performance level. We then show the actual effect of each

_>l)tilllixation on cache design.

Amour the three types of optimizations, instruction placement causes the least amount of code

e×p_,n._ion. Its effects on the cache performance are mostly due to the increased instruction access

>equ.,Ijliality. For small caches where the miss raTdo is relatively high. the increased seq_lenlia,l-

itv reduces the number of cache misses by increasing the useful bytes transferred tot' each cache

Ii_i_.. l"o_' laz'ge caches where the miss ratio is rela.rive]y low. the effect of iz_ ruction plac_,menl is

ILP_livil)J_*.

Ii_]i,,. t',_tc_i,,z_ ,.._'p. llsio, a,ll'_,cr. _h(, c.ch,, I)(_¢'t'ozma.c(, by i.('z'e.._iz_, b.._}_ _l.' _<_q_..z_li.li_v

.lk(l I L,.w,)rkiu_ s_,t size. Fol" small caches \vlwre 1,ho miss ratio ix high ti_., increased sequeutiality

33

helpsto reducethe missratio. Dueto the increasedworkingsetsize.somebenchmarkswhichfit

into moderatelysizedcachesbeforeinlining do not fit after inlining. Therefore,inlining increases

the missratio ofmoderatelv-sizedcaches. For large caches, since the working sets fit in the cache

before and after the cache, the effect of inlining is insignificant.

Superscalar optimizations increase the cache size required for a given [hiss ratio. However,

thev increase the sequentiMity of instruction access so much that a simple load-forward scheme

,,It_,('l i_,Iv cancels the negative effects. Using load forwarding, tile three types of code-expanding

opt imizations jointly improves the performance of small caches in spite of the substantial code

_xpau_ion. Load forwarding also allows the code expanding optimization to have little negative

et[ecl _m the performance of large ca.ches.

Acknowledgements

l he alltlloI'S would like to thank Nam'v "_Varter. Sadun Anik. Scott .kIaiflke. and a.tl melllbel's of

Tt,,, [),1P.\('T I'_s_,_l_'ll .group for their support. ('Ollllllellts and suggestiolp.. This research]i;is be_,n

_upp,_rted by the National Science Foundation (NSF) under Gr_nt MIP-8809478. Dr. Lee Hoevel

a.t N('l_. the AMD 29K Advanced Processor Development Division, the National Aeronautics and

";t_a¢',' .\dmiuistration (NASA)under Contract NASA NAG 1-613 in cooperation with tile [llinois

(omput.er laboratory for Aerospace Systems and Software (ICLAS5).

References

:1'_ .\. V..\ho. 1¢. Sethi. and J. D. ITIIma.n. ('ompih r._. Prilz,'ipl_, "l'_-chl_iq_,.._. _m] lb,l._, l{_a_lill._.

\ I.\ _\ dd ison- _,._lev. 19.'_fi.

2 t¢..\1. St.allma,_. l._i_zg _,_d Fort_n_j (,'.VI (7 '.]"tee 5oft.ware l"o,mda_io,_, luc.. [!)Xg.

:{ .\llt"_ ('ol,ll>,_,', Svslm,_..UIt%' I,,g_m.g_ l,__.,gl.mm_r'._ g_id,, l!]_fi.

3-1

[4] P.P.Changand W. W. Hwu,++Inlinefunctionexpansionfor compilingC programs,"in Proc.

1989 ACM Conf. on Prog. Lang. Design and Implementation, (Portland, OR), June 1989.

[5] A. J. Smith, "'Cache memories," ACM Cbmputing Surveys, vol. 14, no. :3, pp. 473-530, 1982.

[6] .\..l. Smith. "'Linp (block) size choice for (-'pIT cacho memories." [EEE Trons. C'omp+tter.<

vol. C-36. pp. 1063-1075, Sept. 1987.

[7] .\i. D. Hill and A. J. Smith, "'Evaluating associativity in CPU caches." IEEE Tra,zs. COmputers,

vol. C-38, pp. 1+_12-1630, Dee. 1989.

[8] J. E. Smith and J. R. Goodman, "'Instruction cache replacement policies and organizations,"

IEEE Trans. Computers, vol. C-34, pp. 234-241, Mar. 1985.

[9] R. J. Eickenmeyer and J. H. Patel, "Performance evaluation of on-chip register and cache

organizations." in Proe. lSth Am,. lnt'l SWnp. Computer Architecture, (Honolulu. Hawaii).

t>P. (54-72. May 1988.

it()] S. Przybylski. M. Horowitz. and J. Hennessy, "'Performance tradeoffs in cache design." in Proc.

lYth .4+zlz. h_t'l ,g.q,q_. Compttter Architecture, (Honolulu. Hawaii). pp. 290-298. June tOSS.

I 1] D. B. Alpert and M. J. Flynn, "'Performance trade-offs for microprocessor cache memories,"

Ilie,.o. pp. 44 54. Aug. 19S8.

It2] .kl. D. Hill and A. J. Smith, "'Experimental evaluation of on-chip microprocessor cache mere-

odes." in Proc. 1 lth Alzn,. hzt'l Sgmp. Computer Architecture, (Ann Arbor. MI), pp. 1.Ss-166.

.lllne [984.

_t3] .1. Dax'idson attd R. Vaughan. "'The effect of instruction set complexity on program size and

tn(,morv perforntance.'" in Proc. ,5'eco_M h_t'l ('ott]_ o,_ .4rchitectural .S'upport J'or Prog. L_uz 9.

,i,,d ()peF(tDn_,] ,5'.!lsl_.l_z._., (Pal<) Alto. CA). I>P. _J0 _.l. Oct. tgs7.

{14] ('. L. Mitchell and M..1. Flynn. "'The effects of processor architecture on instruction memory

;iHtfi(.'" ..t<',ll 71'¢ll*._actiol* ,_1, (',)repeller .5'g.ste,,#. vol. 8, pp. 230-2.5{). Aug. 90.

i1.5] P. Steenkiste, "'The impact of code density on instruction cache performance," in Proc. 16th

Atzn. lnt'l Syrup. Computer Architecture, (Jerusalem, Israel), pp. 252-259, June 1989.

[i(]]l<. 3. (Tuderman and _,[..J. lTlvnn. "'The relative effects of optimizatiuH ou instruction ,,r(:}ti-

lecture performance," Tech. Rep. CSL-TR-89-398, Computer Systems Laboratory. Stanford

l:r_ivorsitv. Stanford. CA. Oct. 19'9.

I 71 l. +_l. (:<+)l+.t_au(l \.\'. \V. llwu. "Si tg +_-pass nlenlory systetn evaluation for ItlHltiprogt'atlltllil_g

v,,>,'l,:loads.'" T,'ch. Rep. CS(;-1.22. Center for Reliabl,, and lligh-Performance (7omputin+. ['ni-
v,,rsitv of ltlhtoi._. Urbaua. IL..\lay 1990.

I_,} \V \V. tlwu a))d f. _1. ('(>Ht++. "'The s)ls(:el>til>ili_v of t>ro_t'al,>)o ('(>,lexl switchiav.'" 11'.'1".'1:

])+]J,._. ('O,nl)/Jh r._. 1991. su])mJ_t.ed for publication.

35

o/: POOR QClALI_

[t9]

[e0)

[21]

[221

{:_:3]

E_4]

i:_5)

W. W. Hwu and P. P. Chang, "Achieving high instruction cache performance with an opti-

mizing compiler." in Proc. 16th Ann. Int'l Syrup. Computer Architecture. (JerusMem, Israel),

pp. 242-251, June 1989.

S. McFarling, "Program optimization for instruction caches," in Proc. Third Int'l Conf. on

Archztectural .b'upport for Prog. La_zg. and Operating b'ystem_., pp. 1_3--i91, Apr. _969.

K. Pettis and R. (.'. Hansen, "Profile guided code positioning," in P_vc. I990 ACM Co@ on

Prog. Lang. Desigl_ and Implementation, (White Plains, NY), June t990.

J. A. Fisher. "'Trace scheduling: A technique for global microcode compaction," IEEE Trans.

Computers, vol. c-30, no. 7, pp. 478-490, July 1981.

\.V.W. Hwu and P. P. Chang, "'Trace selection for compiling large (' application programs to

microcode,'" in Proc. 21st Ann. Workshop on Microprogramming and Microarchitectures, (San

l)ie_;o. CA.), Nov. 1988.

R. _\lien and ,_..Johnson. "'Coml)iling (' for vectorization, parallelism, and inline expansion." in

l)r,)c. 198X A('.1.I ('onJl o_ Pro 9. Lang. De_irj_ alzd [mplemen, tatio,. (At.lanta, Georgia), June
l!)Xs.

__1..\ uslander and Xl. Hopkins, "'An overview of t he P L.8 compiler/' in Proc. ,4 CM SIGPLA N

"_'" .b'.qtnp, ('mJtptler Cot_structiot_ 1982.

I". ('how and .l. Hennessy, "'Register allocation bv priority-bases coloring," in Pro(:. A('.ll

7(;PL.-t.V "','. S'.qmp. Compiler (_'m_structio_. pp. 222 232. 19S4.

_27] .1. R. l:'llis, t3_d/do_]: a Conzpiler for VLIIl;..tlvhitect_ires. Combridge. MA: The MIT Pres._.
] !),'_6.

[30]

I_. t1. l{a.u and ('. D. Giaeser, "'Some scheduling technique._ and an ea,_ilv schedulable horizontal

alchitecuture for high perlormance scientific computing," in Proc, 14st ,4nr_. Workshop o_,

1l,.r.,pr.ogrom m ing and :l,[ic_wa,','h il_-cture._. Ocl. 1981.

S. Weiss and .I.E. Smith, "'A study of scalar compilation techniques for pipelined supercom-

puters,'" in Proc. Second Int'I Conf. on Architectural Support for Pro 9. Lan 9. and Operating

S/l._tcn_ Oct. 19x7.

1'. P. t'hang, _. ,k. MMflke. \V. Y. Chen, N. ,I. \X:a.rl, er, and _V. \V. llwu. 'lmpacl: .\i1

architectural framework for multiple-instruction processors," in Pr'oc. lgth .4*m. b_t'l £'ymp.

(',,q;,t_ r .Ir,-hit<ctlu'e. (Toronto, (ianada). June 1991.

131] "'Spec newslet_,,r. Feb. 1989. SPEC, Frentont, ('A.

732] (;. I,iam-. 31lt-'S t_l,S'('.qrrhitecttn'_. Englewood ('lifts. N.I: Prentico-llall. 19SS.

36

